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Abstract. Some new tasks are trivial to learn while others are almost
impossible; what determines how easy it is to learn an arbitrary task?
Similar to how our prior beliefs about new visual scenes colors our per-
ception of new stimuli, our priors about the structure of new tasks shapes
our learning and generalization abilities [2]. While quantifying visual pri-
ors has led to major insights on how our visual system works [5,10,11],
quantifying priors over tasks remains a formidable goal, as it is not even
clear how to define a task [4]. Here, we focus on tasks that have a natural
mapping to graphs. We develop a method to quantify humans’ priors over
these “task graphs”, combining new modeling approaches with Markov
chain Monte Carlo with people, MCMCP (a process whereby an agent
learns from data generated by another agent, recursively [9]). We show
that our method recovers priors more accurately than a standard MCMC
sampling approach. Additionally, we propose a novel low-dimensional
“smooth” (In the sense that graphs that differ by fewer edges are given
similar probabilities.) parametrization of probability distributions over
graphs that allows for more accurate recovery of the prior and better
generalization. We have also created an online experiment platform that
gamifies our MCMCP algorithm and allows subjects to interactively draw
the task graphs. We use this platform to collect human data on sev-
eral navigation and social interactions tasks. We show that priors over
these tasks have non-trivial structure, deviating significantly from null
models that are insensitive to the graphical information. The priors also
notably differ between the navigation and social domains, showing fewer
differences between cover stories within the same domain. Finally, we
extend our framework to the more general case of quantifying priors
over exchangeable random structures.
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1 Introduction

1.1 Our Brain Must Utilize Efficient Priors

Our lives are punctuated by a multitude of seemingly disparate new tasks (e.g.,
navigating in a new place, interacting with new people, writing a new abstract)
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that we are able to perform with relative ease. Still, if we consider all tasks we
could possibly be faced with, we would not be good (at least initially) at most
of them (e.g., playing Go). This simple observation leads to a fundamental, yet
unanswered, question in cognitive neuroscience: are there essential structural
properties that unite the tasks that our brains are “naturally” good at solving,
and if so, what are they?

Understanding our brain’s representation of a new task (i.e., our prior about
the task’s structure) is key to answering this question. Indeed, the prior used in
a given task sharply constrains how fast and efficiently (if at all) this task can
be solved [2]. In particular, the curse of dimensionality [3] suggests that task
representations should be compact, filtering out redundancies. However, there is
no free lunch; reduced representations also constrain the set of tasks an agent can
efficiently solve. Thus, these reduced representations should manifest as priors
that leverage on the relevant structure of naturalistic tasks, i.e., tasks that the
organism encounters in everyday life and have been relevant over evolutionary
time-scales [4].

1.2 Main Contributions

Quantifying priors over tasks is a formidable goal [2,4], if not only for the reason
that “what is a task?” is a relatively open-ended question. Here we restrict
our attention to tasks that have a natural mapping to graphs as this allows
us to quantify their structure using graph theoretical tools. Specifically, our
experiments focus on two prominent domains of naturalistic tasks: navigation
and social interaction, with nodes and edges representing, for example, regions
and borders, or people and relationships.

On the theoretical side, we develop a method to quantify humans’ priors over
these “task graphs”, which combines new modeling approaches with Markov chain
Monte Carlo with people (MCMCP) [6,9] – a process whereby an agent learns from
data generated by another agent, recursively. Our simulations demonstrate that
our method recovers these priors more accurately than a standard MCMC sam-
pling approach. This result is particularly relevant for the “resource constrained”
regime, where data are limited and costly to acquire, such as in experiments
with human subjects. Moreover, we propose a novel low-dimensional “smooth”
parametrization of probability distributions over (non-isomorphic) graphs on the
same vertex set. We show that, in the limited data regime, it allows for more accu-
rate recovery of the prior (in silico data), and better generalization (in human
data). Finally, we extend our framework to the more general case of quantifying
priors over exchangeable random structures [14].

On the experimental side, we have created an online experimental platform1

with a game-like interface that instantiates our MCMCP algorithm, and allows
1 Links for some of our experiments:

http://psiturk-geciah.princeton.edu:9001/ (navigation in nature parks),
http://psiturk-geciah.princeton.edu:9003/ (navigation in cities),
http://psiturk-geciah.princeton.edu:9000/ (friendships in workplaces),
http://psiturk-geciah.princeton.edu:9002/ (friendships in school classes).

http://psiturk-geciah.princeton.edu:9001/
http://psiturk-geciah.princeton.edu:9003/
http://psiturk-geciah.princeton.edu:9000/
http://psiturk-geciah.princeton.edu:9002/
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subjects to interactively draw the task graphs. We use this platform to collect
human data on several navigation and social interactions tasks. We show that
priors over these tasks have non-trivial structure, deviating significantly from
null models that are insensitive to the graphical information. Moreover, the
priors are notably different between the navigation and social domains, while
exhibiting fewer differences between different tasks in the same domain (city
and nature park (navigation); coworkers and students (social)).

2 Markov Chain Monte Carlo with People (MCMCP)
over (task) Graphs

Figure 1a illustrates our MCMCP algorithm for generating experiments. For
example, in one of our experiments, the subject is told that they are visiting
a new city, and informed whether certain pairs of neighborhoods share a border
or not (step 1 in Fig. 1a). They then are asked to guess if the other pairs of
neighborhoods share a border or not (step 2 ) by drawing a map using our graph
drawing interface. Additionally, to incentivize subjects to give their true prior,
they are told that there is an underlying truth (e.g., an actual city), and that
they win extra money by correctly guessing the relations obscured.

Fig. 1. Performing Markov chain Monte Carlo with people (MCMCP) in a given task
allows for sampling from their prior over it. (a) Schema of our algorithm for generating
experiments: (0) create a task graph for the first subject; (1) the subject is given partial
information about this graph (a fraction of the pairwise relations chosen at random,
here, 3 out of 6); (2) they are asked to infer the unshown portions (the remaining
pairwise relations); (3) construct a new task graph from these responses for the next
subject; (4) repeat steps 1–3. (b) The algorithm interpreted as MCMC.

This back-and-forth between data seen by the subjects (relations shown,
or “partial graphs”) and the resulting hypothesis they infer (completed “task
graphs”) can be marginalized over the partial graphs to create a Markov chain
(MC) over the space of task graphs (Fig. 1b). Assuming that subjects are
Markovian, and share the same fixed decision rule, this MC is time-homogeneous.
If, in addition, we assume that subjects are “Bayesian”, computing Bayes rule
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using the correct likelihood function2 and a shared prior, and respond by sam-
pling from their posterior, this MC has as its stationary distribution the subjects’
prior over the relevant task graphs.3 Precisely, this “MCMCP Bayesian model”
gives a transition matrix T

¯̄
over the relevant non-isomorphic task graphs, with

entries:
tij = p(gj |gi) =

∑
k
p(gj |dk)p(dk|gi) (1)

where p(dk|gi) is the probability of seeing partial graph dk by randomly obscuring
r relations of the graph gi (with r := total number of relations minus number of
relations shown), and p(gj |dk) is given by Bayes rule using a fixed prior.

3 Results

3.1 Resource Constrained MCMCP

In standard MCMC, one uses samples generated by the algorithm to reconstruct
the target (stationary) distribution. This is inefficient in the following sense: to
obtain i.i.d. samples, only a small fraction of the iterations are used as samples,
as one must discard the initial samples until (hopefully4) the chain has converged
to its stationary distribution (the so called “burn-in” period). In addition, one
might only collect samples every O(τc) iterations (where O(τc) is the autocor-
relation time) to mitigate correlations. While these issues are generally not a
concern when samples are efficiently generated via a computer, in MCMCP the
primary bottleneck is due to the use of human subjects.

Fortunately, in our case, we can use data more efficiently by leveraging the
additional structure provided by the Bayesian assumption. Specifically, we pro-
pose to recover subjects’ prior by fitting their choices to our MCMCP Bayesian
model (as opposed to using the observed graph frequency as a proxy of the
prior as is done in classic MCMC). The unknowns are the probabilities that the
prior gives to each of the non-isomorphic graphs on the relevant vertex set. As
illustrated in Fig. 2, our fitting method recovers the prior more precisely than a
standard MCMC sampling method (especially in the case of constrained chain
length). Moreover, aside from using data more efficiently, our approach has addi-
tional advantages: it does not have the problem of “guessing” the mixing time
(which can vary substantially depending on the prior, number of nodes, and
number of relations obscured); and it also allows for experiments to be run in
parallel.

2 I.e., that the partial graphs are generated by randomly erasing a fraction of the
relations, which they are told in our experiments.

3 Of course, we also need to assume that the chain is ergodic; a fair assumption given
humans’ non-zero probability of doing something strange/unexpected.

4 As determining convergence can be non-trivial in certain cases, especially when the
state space is large.
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Fig. 2. Priors can be more precisely recovered by leveraging the MCMCP assump-
tions. (a) We simulated data from our MCMCP Bayesian model on 5 nodes (34 non-
isomorphic graphs), with a prior chosen to give an asymptotic mixing time of τm ∼ 13
iterations. Each simulation has 2048 data points, split into different chain lengths. We
then fit a multinomial prior to these data, and measured the KL divergence from the
true prior (that generated the data) for the fitted prior and for the sampled frequency
of graphs. Error bars denote ±1 standard deviation. Sampling i.i.d. from the true prior
is shown in gray as reference. Notice that using the graph frequency is doomed to
fail when the chain length is short as there is not enough time for the chain to app-
roach the prior. Moreover, fitting the prior does better than using the graph frequency
even when the chain is much longer than τm. (b) Here we fix the chain length to 16,
and vary the number of chains (same specifications as before). As the number of data
points increases, fitting the prior continues to improve, while using the graph frequency
asymptotes to a finite error.

3.2 A Natural Low-Dimensional Parametrization of Distributions
Over Graphs

The number of non-isomorphic graphs G(n) on n nodes grows superexponen-
tially [15]; given limited data, even for moderate n we cannot sufficiently sample
them all. For these cases, to obtain informative priors, we need to extend the
probabilities to graphs that were not sampled. Our approach is to find a natural
low-dimensional parameterization of the prior. Specifically, we propose to use
the following form for the prior p

¯
:

p
¯

∝ ER(1/2) ∗ exp
G(n)∑

b=2

cbv¯b (2)

where cb are the coefficients to be fit, v
¯b is the bth right eigenvector (ordered by

decreasing eigenvalues) of the transition matrix T
¯̄

from Eq. 1, with the data gen-
erated by obscuring one relation of the underlying graph, and using an ER(1/2)
(Erdős-Rényi model with p = 1/2) distribution as the prior.

This choice has several interesting properties,5 for example, when ci>2 = 0,
there is a unique correspondence between c2 ∈ (−∞,∞) and an ER(p) prior with
5 Formal details about this parametrization and its extension to hypergraphs to appear

in a paper under preparation by Bravo Hermsdorff and Gunderson.
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Fig. 3. Benefits of our low-dimensional smooth parametrization of the prior in the lim-
ited data regime. Error bars denote ±1 standard error (SE). (a) Improved accuracy. We
simulated data using the same specifications as in Fig. 2b, and fit the prior for several
values of df . Notice that when data are limited, using a low-dimensional parametriza-
tion recovers the prior more accurately, but as the number of data points increases,
using the full multinomial (df = G(n) − 1) does best. (b) Better generalization. We
used 1210 data points from a single social cover story on 5 nodes. We randomly split
them into test (698 data points) and training data, and fit the prior for several values
of df . Notice that, in accord with the bias-variance tradeoff, using a low-dimensional
parameterization for the prior results in better generalization (higher log-likelihood of
the unseen data) when data are scarce, but as the number of data points increases,
using the full multinomial does best.

p ∈ (0, 1). “Smoother” priors, parameterized by the number of degrees of freedom
1 ≤ df ≤ G(n) − 1, are obtained by including only the longer-decaying modes
(i.e., ci>df+1 = 0). In Fig. 3a, we show the effect of df when applying our model
to simulated data. When all the graphs are sufficiently sampled, df = G(n) − 1
(equivalent to a full multinomial model) recovers the prior more accurately.
In the limited data regime, however, using fewer coefficients does better, as it
avoids overfitting. Figure 3b illustrates the associated improved generalization
using human data.

3.3 Subjects’ Priors Have Non-trivial Graphical Structure

We compared several models for the priors using leave-p-out cross-validation
(CV) [1] on data from our online experiments.6 In particular, we considered
several choices of df for our smooth parametrization of the prior, a full multi-
nomial prior, and two “null models” (in the sense that they are not sensitive
to graphical structure): (1) Erdős-Rényi (ER) prior, where the edges probabili-
ties are independent and identical random variables; and (2) Prior over average
degree, where the edge probabilities are no longer independent but are com-
pletely exchangeable (equivalent to only counting the number of edges).

For all priors we considered (different cover stories and numbers of nodes), a
smooth parametrization of the prior did better (higher average log-likelihood in

6 Our experiments use graphs on 4 to 10 nodes.
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Fig. 4. Deviations from basic null models suggests that the priors have non-trivial
graphical structure. To generate error bars, we simulated our Bayesian MCMCP model
using the same set of partial graphs and the prior fitted to human data, and then fit
our model to these simulated data. The error bars denote ±1 standard deviation from
the mean fitted prior in the simulated data. (a) Social: Using 481 data points of a cover
story of inferring the friendship network in a workplace with 5 people, we performed
leave-10-out cross validation (CV). The figure displays the fit with the highest CV score
(defined as the average log-likelihood per trial in the test sets). This fitted prior (31 df ,
CV score: −2.52, SE: 0.062) deviates significantly (t-test p-value: < .0001) from both
null models (ER model, CV score: −2.79, SE: 0.043; and prior over average degree, CV
score: −2.71, SE: 0.056). (b) Navigation: We performed the same analysis on a dataset
(537 data points) of a cover story of inferring the trail map of a nature park with 5
sights. As before, the best fitted prior has 31 df (CV score: −2.41, SE: 0.066), and
deviates significantly from both null models (ER model, CV score: −2.79, SE: 0.049;
and prior over average degree, CV score: −2.71, SE: 0.061).

the CV test sets) than the two null models. Additionally, in all cases, the best fit
had a relatively high number of df , suggesting that there is non-trivial graphical
structure in subjects’ priors. Figure 4 displays results for priors over 5 nodes.
Moreover, as illustrated in Fig. 5 when comparing subjects’ priors over different
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Fig. 5. Domain-dependent priors. We compared the priors of 4 experiments with dif-
ferent cover stories in 5 nodes by randomly splitting these 4 datasets in training (382
data points) and test (96 data points) data, and fitting a full multinomial model to
each training set individually as well as to the aggregated 4 training sets. For each
test set, we calculated the likelihood ratio (LR) between the individual fits and the
aggregated fit. Notice that the LR is larger when the training and test data share the
same domain (as indicate by the block diagonal structure of the table). Moreover, the
fact that all LR are smaller than 1 indicates that we still need to collect more data.

cover stories on the same number of nodes, the priors between the navigation and
social domains were notably different, while showing fewer differences between
different contexts in the same domain (navigation: city and nature park; social:
coworkers and students). This raises the interesting possibility that priors over
task graphs are sensitive to the more abstract structure of a task (domain) rather
than its specific context, which would allow for broader generalization.

3.4 General Framework for Quantifying Priors over Exchangeable
Random Structures

Finally, we extend our results to the more general case of quantifying priors over
exchangeable random structures [14], where the partial data are generated by
randomly obscuring a given fraction of the sequence. The relevant parameters
are: A, the alphabet; �, the string length; m, the number of relations obscured;
and G, the group under which the sequence is exchangeable. For example, for
unordered binary strings, A = {0, 1} and G is the full permutation group S�

acting on the entries of strings of length �; for simple graphs, the binary string
is length � =

(
n
2

)
and G is the permutation group Sn, where n is the number of

nodes. An element in G induces a permutation of the indices {1, . . . , �}, and thus
a permutation of the elements in A�. This action of G induces an equivalence
relation on A� (x ∼ y if ∃g ∈ G s.t. x = g.y), partitioning it into equivalence
classes. For example, for unordered binary strings, they are partitioned into �+1
sets, one for each possible sum (0, ..., �); for simple graphs, the partitions corre-
spond to the non-isomorphic graphs on n nodes. The condition of exchangeability
under G means that probabilities are assigned to these partitions, with elements
in the same partition having equal probability.

4 Discussion

In this work, we develop a formal framework to quantify humans’ priors over
exchangeable random structures, and apply it to the case of non-isomorphic
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graphs representing the structure of several navigation and social tasks (instan-
tiated using our new online experimental platform). We believe that navigation
and social interaction tasks are a good starting point as they are an integral part
of humans’ lives and their different structure can provide interesting compar-
isons. Although we are currently collecting more data to improve our statistics,
and doing further detailed analysis of the data (e.g., modeling priors over larger
number of nodes, and building generative models that explains subjects’ priors),
the results reported here are encouraging, in the sense that there appears to be
non-trivial domain-dependent structure in subjects’ priors.

It is important to highlight that our model makes several assumptions
about subjects’ behavior that could not hold in practice (e.g., that they are
“Bayesian”), and that are hard to test empirically (due, e.g., to interactions
among the effects of the different assumptions). We argue that for our method
to shed light on our understanding of our priors over tasks structure, it is more
important to establish whether the priors we obtain from our experiments are in
fact “meaningful” (in the sense of being used in practice) than whether the data
violate certain assumptions or not.7 Hence, to test the behavioral relevance of
our measured priors, we are beginning to test if subjects learn faster/have bet-
ter performance in experimental tasks (distinct from our MCMCP experiments)
with structures consistent with these priors. Additionally, we are working on
developing principled ways to test if analogous real-world datasets have struc-
ture similar to the priors.

In sensory and motor neuroscience, quantifying humans’ priors over these
systems has led to significant insights [7,8,12,13]. For example, several visual
illusions can be understood as resulting from priors that encode the structure
of naturalistic scenes [10,11]. Analogously, understanding our beliefs about the
structure of new tasks could lead to a deeper understanding of our learning and
generalization abilities (as well as their failure modes) [2,4]. We hope that the
approach we proposed will pave the way towards the more ambitious goals of
formalizing what a general “task” is, and of providing unifying principles that
explain what makes a given task easy or hard for a human to solve.
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