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Abstract: 
Recent work quantifying postural dynamics has attempted to define the repertoire of behaviors 1 

performed by an animal. However, a major drawback to these techniques has been their 2 

reliance on dimensionality reduction of images which destroys information about which parts of 3 

the body are used in each behavior. To address this issue, we introduce a deep learning-based 4 

method for pose estimation, LEAP (LEAP Estimates Animal Pose). LEAP automatically predicts 5 

the positions of animal body parts using a deep convolutional neural network with as little as 10 6 

frames of labeled data for training. This framework consists of a graphical interface for 7 

interactive labeling of body parts and software for training the network and fast prediction on 8 

new data (1 hr to train, 185 Hz predictions). We validate LEAP using videos of freely behaving 9 

fruit flies (Drosophila melanogaster) and track 32 distinct points on the body to fully describe the 10 

pose of the head, body, wings, and legs with an error rate of <3% of the animal’s body length. 11 

We recapitulate a number of reported findings on insect gait dynamics and show LEAP’s 12 

applicability as the first step in unsupervised behavioral classification. Finally, we extend the 13 

method to more challenging imaging situations (pairs of flies moving on a mesh-like 14 

background) and movies from freely moving mice (Mus musculus) where we track the full 15 

conformation of the head, body, and limbs. 16 
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Introduction: 17 

Connecting neural activity with behavior requires methods to parse what an animal does into its 18 

constituent components (movements of its body parts), which can then be connected with the 19 

electrical activity that generates each action. This is particularly challenging for natural behavior, 20 

which is dynamic, complex, and seemingly noisy. Human classification of behavior is 21 

painstakingly slow and subject to bias – but recent methods make it feasible to automate the 22 

analysis of behavior 1. These include methods to track animal centroids over time 2–4, machine 23 

learning techniques for identifying user-defined behaviors, such as fighting or courting 5,6, and 24 

software to segment the acoustic signals produced by an animal 7–9. However, one may not 25 

know a priori which behaviors to analyze – this is particularly true when screening mutant 26 

animals or investigating the results of neural perturbations that can alter behavior in unexpected 27 

ways. 28 

 29 

Recent developments in the unsupervised clustering of postural dynamics have overcome many 30 

of these challenges by analyzing the raw frames of movies in a reduced dimensional space 31 

(e.g., generated using Principal Component Analysis (PCA)). By comparing frequency spectra 32 

or fitting auto-regressive models 10,11, these methods both define and provide the ability to 33 

record the occurrence of tens to hundreds of unique, stereotyped behaviors in animals such as 34 

fruit flies or mice. These unsupervised methods have been used to uncover new structure in 35 

behavioral data, facilitating the investigation of temporal sequences 12, social interactions 13, the 36 

analysis of genetic mutants 11,14, and the results of neural perturbation 15,16. 37 

  38 

While powerful, a major drawback to the aforementioned techniques is their reliance on PCA to 39 

reduce the dimensionality of the image time series. While this produces a more manageable 40 

substrate for machine learning, the modes derived from PCA come from the statistics of the 41 

images and are not related directly to any individual body part of the animal. As such, the 42 

discovered stereotyped behaviors must be labeled, classified, and compared manually through 43 

the human observation of representative movie snippets. Given the highly quantitative approach 44 

that precedes this step, it is ultimately unsatisfying and subjective for the experimenter to 45 

manually label each behavior (e.g., foreleg grooming, hindleg grooming, forward locomotion, 46 

right turns, etc.). Instead, what is desired is a mathematical representation of the relative 47 

motions of all parts of the animal that characterizes a particular behavior. Such a description 48 

would facilitate the investigation of the similarities and differences between behaviors and likely 49 

improve the behavioral identification algorithm itself.  50 
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  51 

Measuring all of the body part positions from raw images is a challenging computer vision 52 

problem. Previous attempts at automated body-part tracking in insects and mammals have 53 

relied on either physically constraining the animal and having it walk on a spherical treadmill 17 54 

or linear track 18, applying physical markers to the animal 17,19, or utilizing specialized equipment 55 

such as depth cameras 20–22, frustrated total internal reflection imaging 23,24 or multiple cameras 56 
25. Meanwhile, approaches designed to operate without constraining the natural space of 57 

behaviors make use of image processing techniques that are sensitive to imaging conditions 58 

and require manual correction even after full training 26. 59 

 60 

To address these issues, we turned to deep learning-based methods for pose estimation that 61 

have proven successful on images of humans 27–33. Major breakthroughs in the field have come 62 

from adopting fully convolutional neural network architectures for efficient training and 63 

evaluation of images 34,35 and producing a probabilistic estimate of the position of each tracked 64 

body part 28,30. However, the problems of pose estimation in the typical human setting and that 65 

for laboratory animals are subtly different. Algorithms that work on human images are meant to 66 

deal with large amounts of heterogeneity in body shape, environment, and image quality, but for 67 

which there are very large labeled training sets of images available. On the contrary, behavioral 68 

laboratory experiments are often more controlled, but the imaging conditions may be highly 69 

specific to the experimental paradigm and labeled data is not readily available and must be 70 

generated for every experimental apparatus and animal type. One recent attempt to apply these 71 

techniques to images of behaving animals successfully used transfer learning, whereby 72 

networks initially trained for a more general object classification task are refined by further 73 

training with relatively few samples from animal images 36.  74 

 75 

We have taken a different approach that combines a graphical user interface (GUI)-driven 76 

workflow for labeling images with a simple network architecture that is easy to train and requires 77 

fewer computations to generate predictions. Our method can automatically predict the positions 78 

of animal body parts via iterative training of deep convolutional neural networks with as little as 79 

10 frames of labeled data for initial prediction and training. After initial de novo training, 80 

incrementally refined predictions can be used to guide labeling in new frames, drastically 81 

reducing the time required to label sufficient examples (~500 frames) to achieve an accuracy of 82 

less than 3 pixels (distance from ground truth). Our framework consists of a GUI for interactive 83 

labeling of ground truth body part positions as well as software for efficient training of a 84 
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convolutional neural network on a workstation with a modern GPU (<1 hour) and fast prediction 85 

on new data (up to 185 Hz). We validate the results of our method using a previously published 86 

dataset of high quality videos of freely behaving adult fruit flies (Drosophila melanogaster 10) and 87 

we recapitulate a number of reported findings on insect gait dynamics as a test of its 88 

experimental validity. We then show its applicability as a front end to an unsupervised 89 

behavioral classification algorithm and demonstrate how it can be used to describe stereotyped 90 

behaviors in terms of the dynamics of individual body parts. Finally, we show the generalizability 91 

of this method in challenging imaging conditions as well as in freely moving rodents. 92 

 93 

Results: 94 

Our method, which we refer to as LEAP (LEAP Estimates Animal Pose), consists of three 95 

phases (Fig. 1a): (i) Registration and alignment, in which raw video of a behaving animal is 96 

preprocessed into egocentric coordinates; (ii) Labeling and training, in which the user provides 97 

ground truth labels to train the network to find body part positions in a subset of images; and (iii) 98 

Pose estimation, in which the network can be applied to new and unlabeled data. In the 99 

following sections, we demonstrate the power of this tool using a previously published data set 100 

of 59 male fruit flies, each recorded for one hour at 100 Hz, for a total of >21 million images 10. 101 

All code and utilities are available at https://github.com/leap/talmo.  102 

 103 

The Components of LEAP: 104 

(i) Registration and alignment 105 

The first step in our pipeline is to extract the image region that contains the animal within the 106 

field of view of the camera, as well as its angular heading within the image. This can be 107 

accomplished using standard image processing techniques 37,38 or existing software packages 108 
2,13,39,40. Our implementation 10 is provided in the accompanying code repository. This step 109 

produces egocentric, oriented bounding boxes around each fly image used to train the neural 110 

network. While this step improves pose calculation accuracy as it saves the network from being 111 

required to learn rotational invariance, we note that this can also be learned at the cost of 112 

prediction accuracy  (Supplementary Fig. 1). 113 

 114 

(ii) Labeling, training, and neural network architecture 115 

The neural network learns to predict body part positions from a set of user-labeled images. To 116 

identify a small set of example ‘training’ images that are representative of the set of poses 117 

across the entire data set, we use a technique we refer to as cluster sampling. A simple random 118 
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subset of the movie images are grouped via k-means clustering and then these images are 119 

sampled uniformly across groups for labeling. The grouping is based on linear correlations 120 

between pixel intensities in the images as a proxy measure for similarity in body pose. The 121 

diversity of poses represented using this method can be observed in the centroids of each of the 122 

clusters identified (Supplementary Fig. 2). 123 

 124 

Poses in each training image are labeled using a custom GUI with draggable body part markers 125 

that form a skeleton (Fig. 1b). For the fruit fly, we track four points on each of the six legs, two 126 

points on the wing tips, three points on the thorax and abdomen, and three points on the head 127 

for a total of 32 points in every frame. These points were chosen to align with known Drosophila 128 

body joints (Supplementary Fig. 3). For every training image, the user drags each skeleton 129 

point to the appropriate body part and the program saves the label positions into a self-130 

contained file. To enhance the size of the training image set further without the need for hand 131 

labeling more frames, we augment the dataset by applying small random rotations and body-132 

axis reflections to generate new samples from the labeled data. As the neural network 133 

processes the raw images, the rotated and reflected images add new information that the 134 

network can use during training. 135 

 136 

We first labeled only 10 images, and used these data to train the neural network and generate 137 

body part position estimates for the remaining images chosen via cluster sampling (see below 138 

for details on network training). When trained with only 10 images for just 15 epochs, estimation 139 

error rates were large (Supplementary Fig. 4a-b) but these estimates helped to decrease the 140 

time required to label each subsequent frame. We therefore repeated this procedure of 141 

alternating labeling and initializing via briefly trained network estimates at 50, 100, 250, 500 and 142 

1000 labeled frames, decreasing the time required to label each frame from 2 minutes per frame 143 

for the first 10 frames, to 6 seconds per frame for the last 500 frames (Supplementary Fig. 4c). 144 

Labelling 1500 frames required a total of 7 hours of manual labeling and an additional 1.5 hours 145 

of network training (including 6 “fast” and 1 “full” training epochs). 146 

 147 

The core component of LEAP is a deep convolutional neural network. The network takes as 148 

input a single image of the animal and produces as output a set of confidence maps (probability 149 

distributions) which describe the location of each body part within the input (Fig. 1c). The global 150 

maximum in each confidence map represents the network’s prediction of that body part’s 151 

position (Fig. 1c, insets). We employ a fully convolutional network architecture. This type of 152 
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neural network eschews fully connected layers in lieu of repeated convolutions and pooling 153 

steps, which greatly improves training and prediction performance when working in the image 154 

domain 34. 155 

 156 

We devised a simple 15 layer network architecture that is designed to be fast. The network 157 

consists of two blocks of 3x3x64 convolutions, ReLU nonlinear activation, and 2-strided max 158 

pooling, which is then followed by two blocks of transposed convolutions for upsampling and 159 

additional convolutions for refinement (see Online Methods, Supplementary Fig. 5a). Pooling 160 

and downsampling allow us to keep filter sizes fixed and small, minimizing the number of 161 

computations required while allowing both local and global spatial features to be learned and 162 

combined. Recently published architectures for pose estimation follow these same general 163 

principles, but are often much larger and more complex, using skip connections, residual 164 

modules, and stacked version of the hourglass with intermediate supervision 41. We find that 165 

without these features, our network performs equivalently or better than those architectures 166 

(Supplementary Fig. 5b). 167 

 168 

Network training consisted of a series of epochs, during which initially random weights are 169 

updated to minimize the mean-squared-error loss between ground truth and estimated 170 

confidence maps. During each epoch, 50 batches of 32 randomly sampled training images are 171 

augmented with small random rotations or reflections and evaluated for weight updates. Then, 172 

10 batches are sampled and augmented from the held out validation set and used to compute 173 

the validation loss. This loss is used to decrease the learning rate if no significant improvements 174 

occur for multiple epochs, fine-tuning the learning process. An epoch was completed in 60 to 90 175 

seconds on modern GPUs (see Online Methods). 176 

 177 

For fast training during the labeling and initialization phase, 10% of the data are held out for 178 

validation and training is concluded after 15 epochs. After 1500 images were labeled, we 179 

proceeded to full training, for which we split the data into training (76.5%), validation (13.5%), 180 

and testing (10%) sets. We train the network for 50 epochs to increase the chance of 181 

convergence and use the held out test set to evaluate the final accuracy. All accuracy measures 182 

reported here were computed from this held out test set. 183 

 184 

(iii) Pose estimation 185 
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After amortizing for initialization (loading the network onto the GPU), we find that the network is 186 

able to generate predictions at speeds suitable even for real time processing: 185±1.1 Hz 187 

(mean+-s.d.) for 192x192 images. Without any further refinement, poses generated by the 188 

network faithfully represented many features of Drosophila behavior that have been difficult to 189 

track automatically due to issues of occlusion, e.g., thin body parts, such as the legs, being 190 

occluded by the body or wings (Fig. 1e, Supplementary Movie 1-3). For example, we found 191 

that the network was able to continuously and accurately track the motion of all 6 legs during 192 

extended bouts of locomotion (Fig. 1d, Supplementary Movie 1,2). In addition, the network 193 

can accurately track bouts of head grooming during which the forelegs are highly occluded by 194 

the head (Fig. 1e, Supplementary Movie 3). 195 

 196 

Performance of LEAP: Accuracy, speed, and training sample size 197 

We evaluated the accuracy of LEAP after full training with 1,500 labeled images by measuring 198 

error as the Euclidean distance between estimated and ground truth coordinates of each body 199 

part on a held-out test set of 300 frames. We found that the accuracy level depends on the body 200 

part being tracked, with parts that are more often occluded, such as hind legs, resulting in 201 

slightly higher error rates (Fig. 2a). Overall, we found that error distances for all body parts were 202 

well below 3 pixels for the vast majority of tested images (Fig. 2b). This error is achieved rather 203 

quickly during training, requiring as few as 15 epochs (15-20 minutes of training time) to achieve 204 

approximately 1.97 pixel overall accuracy, and less than 50 epochs (50-75 minutes) for 205 

convergence to 1.63 pixel accuracy with the full training set (Fig. 2c). To measure the ground 206 

truth accuracy during the alternating labeling-training phase, we also measured the errors on 207 

the full test set as a function of the number of labeled images used for training under the fast 208 

training regime (15 epochs). We found that with as few as 10 labeled images the network is able 209 

to achieve <2.5 pixel error (2-3% of body length) in 74% of the test set, while 1,000 labeled 210 

images yields an accuracy of <2.5 pixels in 87% of the test set (Fig. 2d). This level of accuracy 211 

when training for few epochs with few samples contributes to the drastic reduction in time spent 212 

hand-labeling after fast training (Supplementary Fig. 4). 213 

 214 

Leg tracking with LEAP recapitulates previously described gait structure 215 

To evaluate the usefulness of our pose estimator for producing experimentally valid 216 

measurements, we used it to analyze the gait dynamics of freely moving flies. Previous work on 217 

Drosophila gait relied on imaging systems that use a combination of optical touch sensors and 218 

high speed video recording to follow fly legs as they walk 24. Although this system can 219 
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accurately track fly footprints over a few seconds at a time, it cannot track the limbs when they 220 

are not in contact with the surface (during swing). Other methods to investigate gait dynamics 221 

use a semi-automated approach to label fly limbs 26,42. This requires a large time investment to 222 

manually correct automatically generated predictions, and therefore the semi-automated 223 

approach typically involves smaller datasets. 224 

 225 

We began by evaluating our network on the dataset of 59 adult male fruit flies 10 and extracting 226 

the predicted positions of each leg tip in each of 21 million frames. For every frame in which the 227 

fly was moving forward (7.2 hours/2.6 million frames total), we encoded each leg as either in 228 

swing or stance depending on whether the leg was moving forward or backward relative to the 229 

fly's direction of motion (Fig. 3a). Using this encoding, we measured the relationship between 230 

the fly's speed and the duration of stance and swing (Fig. 3b). Similar to previous work, we find 231 

that swing duration is relatively constant across walking speeds, whereas stance duration 232 

decreases with walking speed 24. Because our methods allow us to estimate animal pose during 233 

both stance and swing (versus only during stance 24), we have the opportunity to investigate the 234 

dynamics of leg motion during the swing phase. We found that swing velocity increases with 235 

body speed, corroborating previous results (Fig. 3c). We also found that fly leg velocities follow 236 

a parabolic trajectory parametrized by body speed (Fig. 3c).  237 

 238 

Following the work of 42, we then trained a 3 state Hidden Markov Model (HMM) to capture the 239 

different gait modes exhibited by Drosophila. The emission probabilities from the model of the 240 

resulting hidden states were indicative of tripod, tetrapod, and non-canonical/wave gaits (Fig. 241 

3d). As expected, we observed tripod gait at high body velocities and tetrapod or non-canonical 242 

gaits at intermediate and low velocities, in accordance with previous work 24,42,43 (Fig. 3e-g). 243 

These results demonstrate that our pose estimator is able to effectively capture the dynamics of 244 

known complex behaviors, such as locomotion. 245 

 246 

Body dynamics reveal structure in the fly behavioral repertoire 247 

We next used the output of LEAP as the first step in an unsupervised analysis of the fly 248 

behavioral repertoire 10. We calculated the position of each body part relative to the center of the 249 

fly abdomen for each point in time and then computed a spectrogram for each of these 250 

timeseries via the Continuous Wavelet Transform (CWT). We then concatenated these 251 

spectrograms and embedded the resulting feature vectors into a two-dimensional space of 252 

actions we term a behavior space (Online Methods, Fig. 4a). As has been shown previously, 253 
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the distribution of time points in this space is concentrated into a number of strong peaks that 254 

represent stereotyped behaviors seen across time and in multiple individuals 10. 255 

 256 

We identify clusters in the behavior space distribution by grouping together regions of high 257 

occupancy and stereotypy (Fig. 4b). This distribution is sharper than what we found previously 258 

using a PCA-based compression of the images (Supplementary Fig. 6), with many of the least 259 

resolved behaviors now grouped together appropriately. An additional advantage to using pose 260 

estimation over PCA-based image compression is the ability to describe stereotyped behaviors 261 

by the dynamics of each body part. We calculated the average concatenated spectrogram for 262 

each cluster and found that specific behaviors are recapitulated in the motion power spectrum 263 

for each body part (Fig. 4c-h).  264 

 265 

This method can be used to accurately describe grooming, a class of behaviors that is highly 266 

represented in our dataset. Posterior grooming behaviors exhibited a distinctly symmetric 267 

topology (Fig. 4b-g), revealing both bilateral (Fig. 4e) as well as unilateral grooming of the 268 

wings (Fig. 4c,f) and the rear of the abdomen (Fig. 4d,g). These behaviors involve unilateral, 269 

broadband (1-8 Hz) motion of the hind legs on one side of the body and a slower (~1.5 Hz) 270 

folding of the wing on the same side of the body. In contrast, anterior grooming is characterized 271 

by broadband motions of both front legs with a peak at ~9 Hz, representing the legs rubbing 272 

against each other (Fig. 4h). 273 

 274 

We also discovered a number of unique clusters related to locomotion (Fig 5a,b). The slowest 275 

state (cluster 10) involves a number of frequencies with a broad peak centered at 5.1 Hz (Fig. 5 276 

c-e). This can be seen both in the concatenated spectrograms (Fig. 5c) and the power 277 

spectrum averaged over all leg positions (Fig. 5d). The fly center-of-mass velocity distribution 278 

for this behavior is shown in Figure 5e. As the fly speeds up (clusters 10-15, Fig. 5e), the peak 279 

frequency for the legs increases monotonically to 11.5 Hz (cluster 15). We next asked if the 280 

tripod and tetrapod gaits we found in our previous analysis were represented by distinct regions 281 

in the behavior space. We found that tripod gait was used predominantly in the three fastest 282 

locomotion behaviors whereas the tetrapod (and to a lesser extent the non-canonical) gait was 283 

used for the three slower locomotion behaviors (Supplementary Fig. 5f). 284 

 285 

LEAP generalizes to images with complex backgrounds or of other animals 286 
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To test the robustness and generalizability of our approach under more varied imaging 287 

conditions, we evaluated the performance of LEAP on a dataset in which pair of flies were 288 

imaged against a non-uniform and low contrast background of porous mesh (~4.2 million 289 

frames, ~11.7 hours) (Fig. 6a1). Using the same workflow as in the first dataset, we found that 290 

the pose estimator was able to reliably recover body part positions with high accuracy despite 291 

poorer illumination and a complex background that was at times indistinguishable from the fly 292 

(Fig. 6a2,3, Supplementary Movie 4). We then applied a previously described method for 293 

segmentation and tracking 13 to these images to evaluate the performance when masking out 294 

the background (Fig. 6b1). Even with substantial errors in the masking (e.g., leg or wing 295 

segmentation artifacts), we find that the accuracy remains high and is improved slightly by 296 

excluding the background pixels from the images when compared to the raw images (Fig. 6b2,3, 297 

Supplementary Movie 4). Finally, we tested the applicability of our framework to animals with 298 

different morphology by tracking videos of freely behaving mice (Mus musculus) imaged from 299 

below in an open arena (Fig. 6c1). We observed comparable accuracy in these mice despite 300 

considerable occlusion during behaviors such as rearing (Fig. 6c2,3, Supplementary Movie 5). 301 

 302 

Discussion 303 

Here we present a pipeline (termed LEAP) that uses a deep neural network to track the body 304 

parts of a behaving animal in all frames of a movie via labeling of a small number of images 305 

from across the dataset. We show that this method is fast (requiring one hour to train and 306 

producing body part position estimates at a maximum rate of 185 Hz), accurate (training on 10 307 

frames results in 74% of estimates within 2.5 pixel error while training on 100 frames results in 308 

85% of the frames within 2.5 pixel error), and generalizes across animal species (including flies 309 

and mice) and different regimes of signal to noise ratio. Importantly, we do not construct a single 310 

network to perform pose estimation on all datasets, but rather we present a single architecture 311 

that can be trained to perform pose estimation on any dataset if given a small number of training 312 

samples. All that is required of future users is that the training sets be compiled in a specific 313 

manner that can be facilitated with our user interface (for which we provide code and utilities). 314 

 315 

Discovering the proximate mechanisms underlying behavior relies on an analysis of behavioral 316 

dynamics matched to the timescales of neural and muscular activity. Tracking only the centroid 317 

of an animal and its change in position or heading over time is likely an insufficient level of 318 

description for determining how the nervous system controls most behaviors. Previous studies 319 

have addressed the issue of pose estimation either through centroid tracking 2, pixel-wise 320 
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correlations 10,11, or specialized apparatus for tracking body parts 17,20,24,42,44. For the latter, 321 

applying markers to an animal can limit natural behavior and systems that track particular body 322 

parts are not in general scalable to all body parts or animals with a very different body plan.  323 

 324 

We demonstrate the value of LEAP by showing how it can be applied to the study of locomotor 325 

gait dynamics (Fig. 3, 5) and unsupervised behavioral mapping (Fig. 4, 5) in Drosophila. 326 

Previous studies of gait dynamics have been limited to short stretches of locomotor bouts that 327 

were captured using a specialized imaging system 24 or to the number of behavioral frames that 328 

could be hand-labeled 42. We show that LEAP not only recapitulates previous findings on 329 

locomotor gait, but that it also discovers new aspects of the behavior (for example, that the 330 

dynamics of the leg during swing have a nonlinear relationship with swing velocity). We also 331 

demonstrate the clear interpretability afforded when using LEAP in combination with 332 

unsupervised behavior classification (Fig. 4, 5). This provides a solution to a major shortcoming 333 

in existing approaches, namely that identified behaviors had to be interpreted simply by 334 

watching videos 10,11. Using LEAP as the first step in such unsupervised algorithms, each 335 

discovered behavior can now be interpreted by analyzing the dynamics of each body part. 336 

 337 

There are a number of applications for this pipeline beyond those demonstrated here. Because 338 

the network learns body positions from a small amount of human labeled frames, the network 339 

can be easily trained to track a wide variety of animal species and classes of behavior. Further, 340 

LEAP can be extended to tracking of body parts in 3D by either using multiple cameras or 341 

depth-sensitive devices. This will likely be useful for tracking body parts of head-fixed animals 342 

moving on an air supported treadmill 45,46. These experiments are particularly suited for our 343 

approach, as the movies from head-fixed animals are inherently recorded in egocentric 344 

coordinates. Additionally, we note that the fast prediction performance of our method makes it 345 

compatible with closed-loop experimentation, where joint positions may be computed in realtime 346 

to control experimental parameters such as stimuli presented to the animal or optogenetic 347 

modulation. Lastly, through the addition of a segmentation step for analyzing movies of multiple 348 

animals 2,13,39, LEAP can estimate poses for multiple interacting individuals. 349 

 350 

The primary practical limitation of this framework is the egocentric alignment step that may be 351 

sensitive to imaging conditions and the context of the experiment. We note, however, that many 352 

standard techniques exist to find the centroid and orientation of animals in images, including 353 

deep learning-based approaches 40. Other concerns may pertain to generalizability, in particular 354 
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due to how we train each network from scratch rather than performing transfer learning to reuse 355 

a set of more general, shallow layer feature detectors 36. While transfer learning could easily be 356 

incorporated into LEAP (as well as any other network architecture designed for pose 357 

estimation), we found it to be unnecessary given the inherently low variability of imaging 358 

conditions in the lab and the empirically determined low training data requirements. 359 

 360 

In summary, we present a method for tracking body part positions of freely moving animals with 361 

little manual effort and without the use of physical markers. We show LEAP’s robustness, state-362 

of-the-art performance, validity, and utility for quantitative behavioral analysis. We anticipate that 363 

this tool will reduce the technical barriers to addressing a broad range of previously intractable 364 

questions in ethology and neuroscience through quantitative analysis of the dynamic changes in 365 

the full pose of an animal over time. 366 
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 388 
 389 

Figure 1: Body part tracking via LEAP, a deep learning framework for animal pose 390 

estimation 391 

(a) Overview of the tracking workflow. In the initial preprocessing phase (I), video frames are 392 

centered relative to the animal to render the images in egocentric coordinates. In the beginning 393 

of the training phase (II), representative frames are sampled. After labeling an initial set of 394 

images, the neural network is trained and used to estimate body positions on the remaining 395 

images of the training set to facilitate subsequent correction of labels. Correcting labels takes 396 

progressively less time as the network is trained with increasingly more labeled examples. Once 397 

all training images are labeled, full training involves fine tuning the network to optimize 398 
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performance. Once trained (III), estimation on new, unlabeled data is fully automated and can 399 

be performed at high speed on a GPU. 400 

(b) Graphical user interface for providing ground truth labels and correcting estimates. The 401 

software displays images in the training set with interactive markers denoting the default or best 402 

estimate for each body part (top-left). User input is provided by clicking or dragging the markers 403 

to the correct location (top-right). Colors indicate labeling progress and denote whether the 404 

marker is at the ground truth location (green) or is an estimate from network initialization 405 

(yellow). Progress indicators mark which frames and body parts have been labeled thus far, 406 

while shortcut buttons enable the user to export the labels to use a trained network to initialize 407 

unlabeled body parts with automated estimates. 408 

(c) Data flow through the LEAP pipeline. Raw images are provided as input without markers or 409 

indicators (left). For each input image, the network outputs a stack of confidence maps, a max 410 

projection through which is used here for visualization (middle). Insets overlay individual 411 

confidence maps on the image to reveal how confidence density is centered on each body part, 412 

with the peak indicated by a circle. The predicted coordinate for each body part is the peak 413 

value in each confidence map, enabling a visualization of the tracked skeleton (right). 414 

(d) Walking behavior can be quantitatively described by leg tip trajectories. The distance of each 415 

of the 6 leg tips from its own mean position during a walking bout reveals a cyclic pattern of leg 416 

movements (left). The tracked points on the images span a diversity of poses that change over 417 

fast timescales (right). 418 

(e) Head grooming behavior can also be quantitatively described by leg tip trajectories. Position 419 

estimates are not confounded by occlusions when the legs pass under the head (right, inset). 420 

  421 
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 422 
 423 

Figure 2: LEAP is highly accurate, and requires little training or labeled data 424 

(a) Part-wise accuracy distribution after full training. Circles are plotted on a reference image to 425 

indicate the fraction of held out testing data (n = 300 images) for which estimated positions of 426 

the particular body part are closer to the ground truth than the radii. Most body parts have error 427 

rates below 3 pixels for over 90% of tested images. Body parts that often suffer from occlusion 428 

(e.g., hind legs) have higher rates of error. 429 

(b) Accuracy summary on held out test set after full training. Both total and grouped error rates 430 

fall well below 3 pixels (1/64th of 192x192 pixel images) in terms of Euclidean distance to 431 

ground truth as in (a). 432 

(c) Accuracy as a function of training time demonstrates fast convergence and time/accuracy 433 

trade-off during training. In the “fast training” regime, the training procedure runs for only 15 434 

epochs, allowing the network to approximate convergence-level accuracy in a fraction of the 435 

time, optimal for training for initialization with few samples. For these tests, n = 1215 labeled 436 

frames were used for training. Lines and shaded area indicate mean and SEM for all held out 437 

test images pooled over 5 runs. After 50 epochs, convergence is achieved at the cost of 438 
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additional run time. Run times depend mainly on the performance of the hardware being used, 439 

with a range provided by estimates from high end consumer or enterprise GPUs. 440 

(d) Accuracy as a function of number of training examples demonstrates the trade-off between 441 

estimation accuracy and time spent labeling. Distributions indicate estimation errors in a held 442 

out test set (n = 300 frames) while varying the number of labeled images used for training, 443 

pooled over 5 “fast training” runs. Using as few as 10 labeled images, 74% of body part 444 

estimates fell within 2.5 pixels of their ground truth locations, increasing to 87% with 1000 445 

labeled images (inset). 446 

 447 

  448 
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 449 
 450 

Figure 3: LEAP recapitulates known gait patterning in flies 451 

(a) Schematic of swing and stance encoding. 452 

(b) Duration of swing and stance as a function of average body speed. Stance duration 453 

decreases with increasing body speed, corroborating previous findings (Mendes et al. 2013). 454 

This data comprises approximately 7.2 hours in which the fly is moving forward (2.6 million 455 

frames). Shaded regions indicate one standard deviation. 456 

(c) Swing velocity as a function of time from swing onset, and binned by body speed. Shaded 457 

regions indicate one standard deviation. 458 

(d) Emission probabilities of numbers of legs in stance for each hidden state in the HMM (see 459 

Methods). Hidden state emissions resemble tripod, tetrapod, and non-canonical gaits. 460 
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(e) Distributions of velocities for each hidden state. Flies primarily exhibit tripod gait at high 461 

velocities, and tetrapod or non-canonical gaits at intermediate and slow velocities. 462 

(f,g) Examples of tripod and tetrapod gaits identified by the HMM. 463 

 464 
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 467 

Figure 4: Unsupervised embedding of body position dynamics  468 

(a) Density of freely moving fly body part trajectories, after projecting their spectrograms into to 469 

two dimensions via unsupervised nonlinear manifold embedding (Berman et al., 2014). The 470 

distribution shown is generated from 21.1 million frames. Regions in the space with higher 471 

density correspond to stereotyped movement patterns, whereas low density regions form 472 
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natural divisions between distinct dynamics. A watershed algorithm is used to separate the 473 

peaks in the probability distribution (see Methods).  474 

(b) Cluster boundaries from (a) with cluster numbers indicated.  475 

(c-h) Average spectrograms from time points that fall within the dominant grooming clusters; 476 

cluster numbers are indicated in (b). Posterior grooming behaviors subdivide into symmetric 477 

clusters corresponding to the lateralization of limbs employed (c-g). Qualitative labels for each 478 

cluster based on visual inspection are provided for convenience. Colormap corresponds to 479 

normalized power for each body part. 480 

  481 
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 482 
 483 

Figure 5: Locomotor clusters in behavior space separate distinct gait modes. 484 

(a, b) Density and cluster labels of locomotion clusters (from the same behavioral space shown 485 

in Fig. 4a). 486 

(c) Average spectrograms (similar to Fig. 4c-h) quantify the dynamics in each cluster. The 487 

frequency spectrum of leg movements in each cluster is sharp and shifts from 5.1 to 11.5 Hz 488 

from slowest to fastest locomotion speeds. 489 

(d) Average power spectra calculated from the leg joint positions for each cluster in (c). Colors 490 

correspond to the cluster numbers in (b). Each spectrum has a single dominant peak between 491 

5.1 and 11.5 Hz, with harmonics from 12-25 Hz seen in the fastest subtypes. 492 

(e) The distribution of forward locomotion velocity exhibits a peak that shifts to the right as a 493 

function of cluster number. Colors correspond to cluster numbers in (b). (inset) Forward 494 

locomotion velocity increases with peak leg frequency.  495 

(f) Gait modes identified by HMM from swing/stance state correspond to distinct clusters.  496 
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 497 
 498 

Figure 6: LEAP generalizes to images with complex backgrounds or of other animals 499 

(a) LEAP estimates on a separate dataset of 42 freely moving male flies, each imaged against a 500 

heterogeneous background of mesh and microphones, with side illumination (~4.2 million 501 

frames, ~11.7 hours). 32 body parts (see Supp Fig. 3) were tracked (a1), and 1,530 labeled 502 

frames were used for training. Error rates for position estimates were calculated on a held out 503 

test set of 400 frames (a2) and were comparable to those achieved for images with higher signal 504 

to noise (compare with Fig. 2b). Part-wise error distances (a3) illustrate that accuracy is lower in 505 

distal body parts, likely due to ambiguity with the background mesh holes.  506 

(b) LEAP estimates on masked images from the dataset described in (a). Background was 507 

subtracted using standard image processing algorithms (see Methods) to reduce the effect of 508 

background artifacts. Similar accuracy measures are observed (compare b2 with a2). Error 509 

distances are higher for distal body parts that are often masked out due to the difficulty in 510 

resolving those pixels from the background (b3). 511 
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(c) LEAP estimates on a dataset of freely moving mice imaged from below (~3 million frames, 512 

~4.8 hours). Three points are tracked per leg, in addition to the tip of the snout, neck, and base 513 

and tip of the tail (c1) - 1000 labeled frames were used for training. Accuracy rates on a held out 514 

test set (of 242 frames) are higher but still comparable to fly datasets (c2). Most errors come 515 

from the leg base point, which is often occluded (c3). 516 
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Code availability: The code for running LEAP, as well as all accompanying GUIs, trained 1 

networks, labeled data and analysis code for figure reproduction, can be found in the following 2 

repository: https://github.com/talmo/leap 3 

 4 

Datasets: Details on the dataset of 59 adult male Drosophila can be found in 1,2. Animals were 5 

allowed to move freely in a backlit 100mm diameter circular arena covered by a 2mm tall clear 6 

PETG dome. Videos were captured from the top with a Point Grey Gazelle camera at a 7 

resolution of ~35 pixels/mm at 100 FPS for 1 hour for each fly, totaling ~21 million frames for the 8 

dataset. To calculate the spatial resolution of LEAP we assumed a mean male fly length of 9 

2.82mm 3. 10 

 11 

The second fly dataset reported here (Fig. 5) consists of 42 videos of freely moving pairs of 12 

virgin male and female fruit flies (NM91 strain), 3-5 days post-eclosion. Only males from these 13 

videos were analyzed in this study. Flies moved freely within a 30mm diameter circular arena 14 

with a 2mm tall clear PETG dome against a white mesh floor covering an array of microphones, 15 

resulting in an inhomogeneous image background. Videos were captured from above using a 16 

Point Grey Flea3 camera at a resolution of ~25 pixels/mm at 100 FPS, totaling ~4.2 million 17 

frames. 18 
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 19 

The mouse dataset for Figure 5 consisted of 29 videos of C57/BL6 strain mice (Mus musculus), 20 

15 weeks (108 days) old. Animals moved freely in a 45.7x45.7 cm open field arena with a clear 21 

acrylic floor for 10 minutes each. Videos were captured from below with IR illumination using a 22 

Point Grey Blackfly S camera at a resolution of 1.95 pixels/mm at 170 FPS, totaling ~3 million 23 

frames. Experimental procedures were approved by the Princeton University Institutional Animal 24 

Care and Use Committee and conducted in accordance to the National Institutes of Health 25 

guidelines for the humane care and use of laboratory animals. Mice used in this study were 26 

ordered through Jackson Laboratory (The Jackson Laboratory, Bar Harbor, ME) and had at 27 

least one week of acclimation to the Princeton Neuroscience Institute vivarium before 28 

experimental procedures were performed. Mice were kept in group cages with food and water 29 

ad libitum under a reversed 12:12 hour dark-light cycle (light: 19:30-7:30).  30 

 31 

Preprocessing and alignment to generate egocentric images for labeling and training in 32 

LEAP: For the main fly dataset (59 males), we used the alignment algorithm from 1. The raw 33 

videos consisted of unoriented bounding boxes around the flies from a closed-loop camera 34 

tracking system. Individual frames were then aligned to a template image of an oriented fly by 35 

matching the peak of the Radon transformed fly image to recover the orientation and then 36 

computing the cross correlation to center the fly. The centroid and orientation parameters were 37 

used to crop a 200x200 pixel oriented bounding box in each frame. Code for alignment is 38 

available in the repository accompanying the original paper: 39 

https://github.com/gordonberman/MotionMapper 40 

 41 

For the second fly dataset (42 males), we adapted a previously published method for tracking 42 

and segmentation of videos of courting fruit flies 4. We first modeled the mesh background of the 43 

images by fitting a normal distribution to each pixel in the frame across time with a constant 44 

variance to account for camera shot noise. The posterior was evaluated at each pixel of each 45 

frame and then thresholded to segment the foreground pixels. Due to the inhomogeneity of the 46 

arena floor mesh, significant segmentation artifacts were introduced, particularly when 47 

translucent or very thin body parts (i.e., wings and legs) could not be disambiguated from the 48 

dark background mesh holes. The subsequent steps of histogram thresholding, morphological 49 

filtering and ellipse fitting were performed as described previously in 4. We developed a simple 50 

GUI for proofreading the automated ellipse tracking before extracting 200 x 200 pixel oriented 51 

bounding boxes. We extracted bounding boxes for both animals in each frame and saved both 52 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/331181doi: bioRxiv preprint first posted online May. 25, 2018; 

http://dx.doi.org/10.1101/331181
http://creativecommons.org/licenses/by-nc-nd/4.0/


the raw pixels containing the background mesh as well as the foreground-only images which 53 

contain segmentation artifacts. This pipeline was implemented in MATLAB and the code is 54 

available in the code repository accompanying this paper. 55 

 56 

For the mouse videos, a separate preprocessing pipeline was developed. Raw videos were 57 

processed in three stages: (1) animal tracking, (2) segmentation from background, and (3) 58 

alignment to the body centroid and tail-body interface. In stage (1), the mouse's torso centroid 59 

was tracked by subtracting a background image (median calculated at each pixel value across 60 

that video), retrieving pixels with a brightness above a chosen threshold from background (mice 61 

were brighter than background), and using morphological opening to eliminate noise and the 62 

mouse's appendages. The largest contiguous region reliably captured the mouse's torso 63 

(referred to below as the torso mask) and was used to fit an ellipse whose center was used to 64 

approximate the center of the animal. In stage (2), a similar procedure as in stage (1) was 65 

employed to retrieve a full body mask. In this stage, a more permissive threshold and smaller 66 

morphological opening radius were used than in stage (1) to capture the mouse's body edges, 67 

limbs, and tail while still eliminating noise. The pixels outside of this body mask were set to 0. In 68 

stage (3) each segmented video frame was translated and rotated such that frame's center 69 

coincided with the center of the animal and the x-axis lay on the line connecting the center and 70 

tail-body attachment point. The tail-body attachment point was defined as the center of a region 71 

overlapping between the torso mask and a dilated tail mask. The tail mask was defined as the 72 

largest region remaining after subtracting the torso mask from the full body mask and 73 

performing a morphological opening. After applying these masks to segment the raw images, 74 

bounding boxes were extracted by using the ellipse center and orientation. 75 

 76 

Oriented bounding boxes were cropped to 192 x 192 pixels for all datasets to ensure 77 

consistency in output image size after repeated pooling and upsampling steps in the neural 78 

network. These data were stored in self-describing HDF5 files. 79 

 80 

Sampling diverse images for labeling and training in LEAP: To ensure diversity in image 81 

and pose space when operating at low sample sizes, we employ a multistage cluster sampling 82 

technique. First, 𝑛0 images were sampled uniformly from each dataset by using a fixed stride 83 

over time to minimize correlations being temporally adjacent samples. We then used principal 84 

component analysis (PCA) to reduce their dimensionality, and the images were then projected 85 

down to the first 𝐷 principal components. After dimensionality reduction, the images were 86 
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grouped via k-means clustering into 𝑘 subgroups from which 𝑛 images were randomly sampled 87 

from each group. To minimize the time necessary for the network to generalize to images from 88 

all groups, we sorted the dataset such that consecutive samples cycled through the groups. 89 

This way, uniform sampling was maintained even at the early phases of user labeling, ensuring 90 

that even a network trained on only the first few images will be optimized to estimate body part 91 

positions for a diversity of poses. We used 𝑛0 = 500, yielding 29,500 initial samples; 𝐷 = 50, 92 

which is sufficient to explain 80% of the variance in the data (Supplementary Fig. 2); 𝑘 =93 

10and 𝑛 = 150 to produce a final dataset of 1,500 frames for labeling and training. 94 

 95 

LEAP neural network design and implementation: We based our network architecture on 96 

previous designs of neural networks for human pose estimation 5–7. We adopt a fully 97 

convolutional architecture that learns a mapping from raw images to a set of confidence maps. 98 

These maps are images that can be interpreted as the 2-d probability distribution (i.e., heatmap) 99 

centered at the spatial coordinates of each body part within the image. We train the network to 100 

output one confidence map per body part stacked along the channel axis. 101 

 102 

Our network consists of 15 layers of repeated convolutions and pooling (Supplementary Fig. 103 

4). The convolution block consists of 3x convolution layers (64 filters, 3x3 kernel size, 1x1 stride, 104 

ReLU activation). The full network consists of 1x convolution block, 1x max pooling across 105 

channels (2x2 pooling size, 2x2 stride), 1x convolution block (128 filters), 1x max pooling (2x2 106 

pooling size, 2x2 stride), 1x convolution block (256 filters), 1x transposed convolution (128 107 

filters, 3x3 kernel size, 2x2 stride, ReLU activation, Glorot normal initialization), 2x convolution 108 

(128 filters, 3x3 kernel size, 1x1 stride, ReLU activation), and 1x transposed convolution (128 109 

filters, 3x3 kernel size, 2x2 stride, linear activation, Glorot normal initialization). 110 

 111 

We base our decisions of these hyperparameters on the idea that repeated convolutions and 112 

strided max pooling enable the network to learn feature detectors across spatial scales. This 113 

allows the network to learn how to estimate confidence maps using global image structure 114 

which provides contextual information that can be used to improve estimates even for occluded 115 

parts 5,7. Despite the loss of resolution from pooling, the upsampling learned through transposed 116 

convolutions is sufficient to recover the spatial precision in the confidence maps. We do not 117 

employ skip connections, residual modules, stacked networks, regression networks, or affinity 118 

fields in our architecture as used in other approaches of human pose estimation 5,6,8,9. 119 

 120 
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For comparison, we also implemented the stacked hourglass network 7. We tested both the 121 

single hourglass version and 2x stacked hourglass with intermediate supervision. The hourglass 122 

network consisted of 4x residual bottleneck modules (64 output filters) with max pooling (2x2 123 

pool, 2x2 stride), followed by their symmetric upsampling blocks and respective skip 124 

connections. The stacked version adds intermediate supervision in the form of a loss term on 125 

the output of the first network in addition to the final output. 126 

 127 

We implemented all versions of neural networks in Python via Keras and TensorFlow, popular 128 

deep learning packages that allow transparent GPU acceleration and easy portability across 129 

operating systems and platforms. All Python code was written for Python 3.6.4. Required 130 

libraries were installed via the pip package manager: numpy (1.14.1), h5py (2.7.1), tensorflow-131 

gpu (1.6.0), keras (2.1.4). We tested our code on machines running either Windows 10 (v1709) 132 

and a RedHat-based Linux distribution (Springdale 7.4) with no additional steps required to port 133 

the software other than installing the required libraries. 134 

 135 

Code for all network implementations is available in the main repository accompanying this 136 

paper. 137 

 138 

LEAP training procedure: Prior to training, we generated an augmented dataset from the user-139 

provided labels and corresponding images. We first doubled the number of images by mirroring 140 

the images along the body symmetric axis and adjusting the body part coordinates accordingly, 141 

including swapping left/right body part labels (e.g., legs). Then, we generated confidence maps 142 

for each body part in each image by rendering the 2-d Gaussian probability distribution centered 143 

at the ground truth body part coordinates, 𝜇 = (x, 𝑦), and fixed covariance, 𝛴 = 𝑑𝑖𝑎𝑔(𝜎) with a 144 

constant 𝜎 = 5𝑝𝑥. These were pre-generated and cached to disk to minimize the necessary 145 

processing time during training. 146 

 147 

Once confidence maps were computed for each image, we split the dataset into training, 148 

validation and test sets. The training set was used for backpropagation of the loss for updating 149 

network weights, the validation set was used to estimate performance and adjust the learning 150 

rate over epochs, and the test set was held out for analysis. For the fast training, the dataset 151 

was split into only training (90%) and validation (10%) sets to make the best use of data when 152 

training with very few labels. For full training, the dataset was split into training (76.5%), 153 
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validation (13.5%) and testing (10%) sets. All analyses reported here share the same held out 154 

test set to ensure it is never trained against for any replicate. 155 

 156 

All training was done using the Adam optimizer with default parameters as described in the 157 

original paper 10. We started with a learning rate of 1e-3 but use a scheduler to reduce it by a 158 

factor of 0.1 when the validation loss fails to improve by a minimum threshold of 1e-5 for 3 159 

epochs. The loss function optimized against is simply the mean squared error between 160 

estimated and ground truth confidence maps. 161 

 162 

During training, we considered an epoch to be a set of 50 batches of 32 images, which were 163 

sampled randomly with replacement from the training set and augmented by applying a random 164 

rotation to the input image and the corresponding ground truth confidence maps. At the end of 165 

50 batches of training, 10 batches were sampled from the separate validation set, augmented 166 

and evaluated and the loss was used for learning rate scheduling. An epoch evaluated in 60 to 167 

90 seconds including all augmentation, forward and reverse passes, and the validation forward 168 

pass when running on a modern GPU (NVIDIA GeForce GTX 1080 Ti or P100). 169 

 170 

We ran this entire procedure for 15 epochs during the fast training stage, and for 50 epochs 171 

during the full training stage. For analyses, a minimum of 5 replicates were fully trained on each 172 

dataset to estimate the stability of optimization convergence. 173 

 174 

Pose estimation from confidence maps: Predictions of body part positions were computed 175 

directly on the GPU. We implement a channel-wise global maximum operation to convert the 176 

confidence maps into image coordinates as a TensorFlow function, further improving runtime 177 

prediction performance by avoiding the costly transfer of large confidence map arrays. All 178 

prediction functions including normalization and saving were implemented as a self-contained 179 

Python script with a command-line interface for ease of batch processing. 180 

 181 

Computing hardware: All performance tests were conducted on a high end consumer-grade 182 

workstation equipped with a Intel Core i7-5960X CPU, 128 GB DDR4 RAM, NVMe SSD drives, 183 

and a single NVIDIA GeForce 1080 GTX Ti (12 GB) GPU. We also use Princeton University’s 184 

High Performance Computing cluster with nodes equipped with NVIDIA P100 GPUs for batch 185 

processing. These higher end cards afford a speed-up of ~1.5x in the training phase. 186 

 187 
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Accuracy analysis: For all analyses of accuracy (Figs. 2, 6; Supplementary Figs. 4, 5), we 188 

trained at least 5 replicates of the network with the same training/validation/testing datasets. All 189 

analyses were performed in MATLAB R2018a (MathWorks). We used the gramm toolbox for 190 

figure plotting 11. 191 

 192 

Gait analysis: We translated the body position coordinates to egocentric coordinates by 193 

subtracting the predicted location of the intersection between the thorax and abdomen from all 194 

other body position predictions for each frame. We then calculated the instantaneous velocity 195 

along the rostrocaudal axis of each leg tip within these truly egocentric reference coordinates. 196 

The speed of each body part was smoothed using a Gaussian filter with a five frame moving 197 

window. For each leg tip, instances in which the smoothed velocity was greater than zero were 198 

defined as swing while those less than zero were defined as stance. Information from this 199 

egocentric axis was combined with allocentric tracking data to incorporate speed and orientation 200 

information. The centroids and orientations of the flies were smoothed using a moving mean 201 

filter with a five frame window to find the instantaneous speed and forward velocity. To remove 202 

idle bouts and instances of backward walking, all gait analyses were limited to times when the 203 

fly was moving in the forward direction at a velocity greater than 2 mm/s (approximately one 204 

body length/s) unless otherwise noted. The analyses relating stance and swing duration to body 205 

velocity were limited to forward velocities greater than 7.2 mm/s, to remain in line with previous 206 

work 12.  207 

 208 

To measure gait modes, we trained an HMM to model gait as described previously 13. The 209 

training data consisted of a vector denoting the number of legs in stance for bouts in which the 210 

fly was moving forward at a velocity greater than 2 mm/s lasting longer than 0.5 seconds. 211 

Training data were sampled such that up to 3,000 frames were taken from each video, resulting 212 

in a total of 159,270 frames. We trained a three-state HMM using the Baum-Welch algorithm 213 

and randomly initialized transition and emission probabilities 14. We designated each hidden 214 

state as tripod, tetrapod, and non-canonical in accordance with the estimated emission 215 

probabilities. We then used the Viterbi algorithm along with our estimated transition and 216 

emission matrices to predict the most likely sequence of hidden states from which the observed 217 

stance vectors for the entire dataset would emerge 15.  218 

 219 

Unsupervised embedding of body part dynamics: In order to create a map of motor 220 

behaviors described by body part movements, we used a previously described method for 221 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/331181doi: bioRxiv preprint first posted online May. 25, 2018; 

http://dx.doi.org/10.1101/331181
http://creativecommons.org/licenses/by-nc-nd/4.0/


discovering stereotypy in postural dynamics 1. First, body part positions were predicted for each 222 

frame in our dataset to yield a set of 32 timeseries of egocentric trajectories in image 223 

coordinates for each video. These timeseries were recentered by subtracting the thorax 224 

coordinate at each timepoint and rescaled to comparable ranges by z-scoring each timeseries. 225 

The timeseries were then expanded into spectrograms by applying the Continuous Wavelet 226 

Transform (CWT) parametrized by the Morlet wavelet as the mother wavelet and 25 scales 227 

chosen to match dyadically spaced center frequencies spanning 1 to 50 Hz. This time-frequency 228 

representation augments the instantaneous representation of pose at each timepoint to one that 229 

captures oscillations across many timescales. The instantaneous spectral amplitudes of each 230 

body part were then concatenated into a single vector of length 2(𝐽 − 1)𝐹 where 𝐽 is the number 231 

of body parts before subtracting the body part used as reference (i.e., the thorax) and doubled 232 

to account for both 𝑥 and 𝑦 coordinates, and 𝐹 is the number of frequencies being measured via 233 

CWT. In our data, this resulted in a 1,550-dimensional representation at each timepoint. 234 

 235 

Finally, we performed nonlinear dimensionality reduction on these high dimensional vectors by 236 

using a nonlinear manifold embedding algorithm 16. We first selected representative timepoints 237 

via importance sampling, wherein a random sampling of timepoints in each video is embedded 238 

into a 2D manifold via t-distributed stochastic neighbor embedding (t-SNE) and clustered via the 239 

watershed transform. This allowed us to choose a set of timepoints from each video that were 240 

representative of their local clusters, i.e., spanning the space of postural dynamics. A final 241 

behavior space distribution was then computed by embedding the selected representative 242 

timepoints using t-SNE to produce the full manifold of postural dynamics in two dimensions. 243 

 244 

After projecting all remaining timepoints in the dataset into this manifold, we computed their 2-d 245 

distribution and smoothed with a Gaussian kernel with 𝜎 = 0.65 to approximate the probability 246 

density function of this space. We clipped the range of this density map to the range [0.5 ×247 

10−3, 2.75 × 10−3] to exclude low density regions and merge very high density regions. We then 248 

clustered similar points by segmenting the space into regions of similar body part dynamics by 249 

applying the watershed transform to the density. Although both the manifold coordinates 250 

representation of each timepoint are not immediately meaningful, we were able to derive an 251 

intuitive interpretation of each cluster by referring to the high dimensional representation of their 252 

constituent timepoints. To do this, we sampled timepoints from each cluster and averaged their 253 

corresponding high dimensional feature vector, which we can then visualize by reshaping it into 254 

a body part-frequency matrix (Fig. 4).  255 
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Supplementary Figure 1: Rotational invariance is learned at the cost of prediction 
accuracy 
(a) Rotations are applied about the center of the image. During training, confidence maps are 
rotated accordingly. 
(b) The accuracy measured as the RMSE of position estimates when evaluated on data rotated 
at a fixed angle (rows) with networks trained on data augmented by rotations between a range 
of angles (columns). Red boxes denote the best accuracy for each data angle, denoting that 
optimal performance is achieved when the network is trained on augmented images with the 
minimally inclusive range of angles. Top accuracy decreases relative to the degree of rotational 
invariance the network must learn. 
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Supplementary Figure 2: Cluster sampling to promote pose diversity in labeling dataset 
(a) Principal component analysis (PCA) of unlabeled images captures the majority of the 
variance in the data within 50 components. The cumulative variance explained (line) suggests 
that using PCA for dimensionality reduction does not sacrifice substantial loss of information 
within the images. 
(b) Top PCA eigenmodes visualized as coefficient images. Red and blue shading denote 
positive and negative coefficients at each pixel. Areas of similar colors indicate correlated pixel 
intensities within a given mode. After mean subtraction, each image in the initially sampled 
dataset is projected onto all 50 eigenmodes. 
(c) Cluster centroids identified by k-means after PCA. Red and blue shading denote pixels with 
higher or lower intensity than the overall mean. Cluster centroids illustrate the diversity of poses 
that are detected in image space by this sampling method. Samples are then drawn evenly from 
each cluster to select representative images for labeling with the GUI. 
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Supplementary Figure 3: User-defined skeleton 
We selected 32 points to cover the body parts of the fly; these parts were chosen to 
approximately match the set of visible joints and interest points in the anatomy of the animal.  
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Supplementary Figure 4: Estimation accuracy improves with few samples 
(a-b) Error distance distributions per body part when estimated with networks trained for 15 
epochs on 10 (a) or  250 (b) labeled frames. The majority of estimates fall within few pixels of 
the ground truth, reducing the labeling procedure to simply correcting estimates. 
(c) Time spent labeling each frame decreases with the quality of initialization. Line and shaded 
region correspond to mean and standard deviation. Starting frames require 115.4+-45.0 
(mean+-s.d.) seconds to label, decreasing to 6.1±7.7 seconds after initializing with a network 
trained on 1000 labeled frames. 
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Supplementary Figure 5: Neural network architecture comparison 
(a) Diagram of our neural network architecture. Raw images are provided as input into the 
network, which then computes a set of confidence maps of the same height and width as the 
input image (top row). The network consists of a set of convolutions, max pooling and 
transposed convolutions whose weights are learned during training (top middle). Estimated 
confidence maps are compared to ground truth maps generated from user labels using a mean 
squared error loss function, which is then minimized during training (bottom row). 
(b) Accuracy comparison between architectures. We compared the accuracy of our architecture 
to the hourglass and stacked hourglass versions of the network described in1. The accuracy of 
our network is equivalent or better than those achieved when training with these reference 
architectures. 
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Supplementary Figure 6: Comparison of behavioral space distributions generated from 
compressed images versus body part positions. 
(a) Behavioral space distribution from 59 male flies calculated using the original MotionMapper 
pipeline (data and pipeline from 2), including Radon-transform compression and PCA-based 
projection onto the first 50 principal components followed by a nonlinear embedding of the 
resultant spectrograms. 
(b) Behavioral space distribution from 59 male flies (data and pipeline from 2) calculated using 
spectrograms generated from tracked body part positions rather than PCA modes (see Online 
Methods). We note that this distribution has fewer peaks than that from (a) and a more 
symmetric topology (e.g in the top-left clusters, Fig. 4c-g). 
(c) Joint probability distribution of the cluster labels from (a) and (b); sorted by row and column 
peaks. Many clusters identified using the pixel-based representation (rows) match up with those 
of the position-based representation (columns), but some are distributed into newly separated 
clusters. 
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Supplementary Movie 1: Body part tracking is reliable over long periods without temporal 
constraints. 
Raw images (left), max projection of all confidence maps (center), and tracked images (right) 
during a 20 second bout of free movement. Video playback at 0.2x realtime speed. 
 
 
 
 
 
 

 
 
Supplementary Movie 2: Body part tracking during freely moving locomotion. 
Raw images (left), max projection of all confidence maps (center), and tracked images (right) 
during a bout of locomotion. Video playback at 0.15x realtime speed. Video corresponds to Fig. 
1d.  
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Supplementary Movie 3: Body part tracking during head grooming. 
Raw images (left), max projection of all confidence maps (center), and tracked images (right) 
during a bout of head grooming. Video playback at 0.15x realtime speed. Video corresponds to 
Fig. 1e. 
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Supplementary Movie 4: Tracking joints robustly in images with heterogeneous 
background and noisy segmentation. 
Raw images (left), max projection of all confidence maps (center), and tracked images (right) of 
a freely moving courting male fly. Rows correspond to results from a network trained on 
unmasked and masked images, respectively. Video playback at 0.2x realtime speed. 
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Supplementary Movie 5: Tracking joints in freely moving rodents. 
Raw images (left), max projection of all confidence maps (center), and tracked images (right) of 
a freely moving mouse in an open field arena imaged from below through a clear acrylic floor. 
Video playback at 0.2x realtime speed. Tracking is reliable over time but degenerate when 
certain parts are occluded, such as when the animal rears. 
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